Artificial neural network based chaotic generator for cryptology
نویسندگان
چکیده
Chaotic systems are sensitive to initial conditions, system parameters and topological transitivity and these properties are also remarkable for cryptanalysts. Noise like behavior of chaotic systems is the main reason of using these systems in cryptology. However some properties of chaotic systems such as synchronization, fewness of parameters etc. cause serious problems for cryptology. In this paper, to overcome disadvantages of chaotic systems, the dynamics of Chua’s circuit namely x , y and z were modeled using Artificial Neural Network (ANN). ANNs have some distinctive capabilities like learning from experiences, generalizing from a few data and nonlinear relationship between inputs and outputs. The proposed ANN was trained in different structures using different learning algorithms. To train the ANN, 24 different sets including the initial conditions of Chua’s circuit were used and each set consisted of about 1800 input-output data. The experimental results showed that a feed-forward Multi Layer Perceptron (MLP), trained with Bayesian Regulation backpropagation algorithm, was found as the suitable network structure. As a case study, a message was first encrypted and then decrypted by the chaotic dynamics obtained from the proposed ANN and a comparison was made between the proposed ANN and the numerical solution of Chua’s circuit about encrypted and decrypted messages.
منابع مشابه
Efficient neural chaotic generator for image encryption
In this paper, we propose a new implementation of chaotic generator using artificial neural network. Neural network can act as an efficient source of perturbation in the chaotic generator which increases the cycle’s length, and thus avoid the dynamical degradation due to the used finite dimensional space. On the other hand, the use of neural network enlarges the key space of the chaotic generat...
متن کاملArtificial neural network model to predict the performance of a diesel power generator fueled with biodiesel
Alternative fuels are intensively investigated for the replacement of the diesel fuel. Today the diesel power generators are mostly used in the various industrial companies in Iran. Therefore, it is necessary to estimate the level of performance of the diesel power generators fueled with biofuels. For the first time, in this study, the prediction of the performance of a diesel power generator m...
متن کاملSliding Mode with Neural Network Regulator for DFIG Using Two-Level NPWM Strategy
This article presents a sliding mode control (SMC) with artificial neural network (ANN) regulator for the doubly fed induction generator (DFIG) using two-level neural pulse width modulation (NPWM) technique. The proposed control scheme of the DFIG-based wind turbine system (WTS) combines the advantages of SMC control and ANN regulator. The reaching conditions, robustness and stability of the sy...
متن کاملNonlinear Function Generators and Chaotic Signal Generators Based on Pulse-Phase Modulation
This paper proposes a new arbitrary nonlinear transfer function generator circuit based on pulse-phase modulation. The circuit can generate an arbitrary non-monotone function with an identical circuit con guration. Chaotic signal generators using this function generator are also proposed. Circuit simulation results demonstrate that the new approach achieves high precision transformation. These ...
متن کاملبهبود بازشناسی مقاوم الگو در شبکه های عصبی بازگشتی جاذب از طریق به کارگیری دینامیک های آشوب گونه
In this paper, two kinds of chaotic neural networks are proposed to evaluate the efficiency of chaotic dynamics in robust pattern recognition. The First model is designed based on natural selection theory. In this model, attractor recurrent neural network, intelligently, guides the evaluation of chaotic nodes in order to obtain the best solution. In the second model, a different structure of ch...
متن کامل